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PROBLEM OF STRUCTURING

How to state the problem of substructures (clusters) in two-

(or few-) cluster system taking into account indistingvishibility

of identical fermions and the strong nuclear interaction?

STRUCTURING OF MOLECULES

Two types of particles (e, N) Coulomb nr + l degeneracy

Spontaneous symmetry break up Adiabaticity

Distances Angles

Conserving of substructures

World around us

…………..



HISTORY OF  CLUSTERING RESEARCHES

Beginning:

Resonating Group Model, RGM (Wheeler, 1937).

. . . . . . . . .

A unified theory of the nucleus (Wildermuth and Tang, 1977).

. . . . . . . . .

Clustering in the shell model and its adoption to the decay

and reaction theory. Spectroscopic factors. (Mang,1957 –

alpha-decay; Balashov, Neudatchin, Smirnov, Yudin, 1959 –

transfer and knock-out reactions).

Multiple contributions:

Smirnov et al – shell-model algebra.

Neudatchin et al – cluster-cluster potential with forbidden

states.

Kukulin et al – multicluster dynamical model.

Zelenskaya et al – cluster transfer reactions.

. . . . . . . . .



COMPOSITE PARTICLE INTERACTION IN THE 

RGM. ONE-CHANNEL PROBLEM

The wave function (WF) of the resonating group

model (Wheeler, 1937) is chosen in the form:

where

The A-fermion Schrödinger equation
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results in two-body equation of another type:
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Introducing a new WF:
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one can obtain the Schrödinger-like equation with

Hermitian Hamiltonian.

where the habituated orthonormalization conditions

take place:

( ) ( ) 1    =

'( ) ( ) ( '), .E E E E etc    =  −

- for states of discrete spectra,

- for continuum states.



CLUSTERING IN BOUND STATES

A basic concept of the approach is the definition of

measures of clustering in arbitrary A-nucleon model

(cluster characteristics). Traditional definition were the

following:

a) the spectroscopic amplitude –

ˆ| { ( ) } ;nl

MDC M D nl CC A  =   

b) the projection of the nuclear WF onto the cluster

channel – the cluster form factor (CFF) and its norm –

spectroscopic factor (SF) –
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A great formalism was developed for calculations of the

cluster characteristics :

Neudatchin VG, Smirnov YF, Nucleon Clusters in Light

Nuclei. M: Nauka Moscov, 1969.

Smirnov YF, Tchuvil’sky YM, Phys. Rev. C, 15 84

(1977).

Nemets OF, Neudachin VG, Rudchik AT, Smirnov YF,

Tchuvil’sky YM, Nucleon Clusters in Atomic Nuclei and

Multinucleon Transfer Reactions,

Naukova Dumka, Kiev, 1988.

Tchuvil’sky YM, Kurowsky WW, Sakharuk AA,

Neudachin VG, Phys. Rev. C, 51 784 (1995).



In the paper [T. Fliessbach and H.J. Mang, Nucl. Phys. A

263, 75 (1976)] the habituated view on the clustering

measures was thrown doubt. The matter is that a more

accurate matching procedure (point or integral) is

required to deduce the amplitude and the width of a

cluster channel.

REDEFINITION OF THE CLUSTERING MEASURES. 

“NEW”  CLUSTER CHARACTERISTICS.
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So the cluster form factors and the spectroscopic factors

should be defined as:

1 2
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where the norm (overlap) kernel takes the form:

In the case that ˆˆ; 1.N→ →

1/ 2 2 2ˆ' | ( ) | .MDCS N d   − 

It is this function should be matched with an asymptotic WF

in the area where the form of “new” CFF reproduces its

form
( ) ( )l lF   

while
1/ 2ˆ ( ).l lN   



Lovas RG, Liotta RJ, Insolia A, Varga K, Delion DS, 

Microscopic Theory of Cluster Radioactivity. Phys. 

Rep., 294, 265 (1998). 

A term “amount of clustering” was introduced fo the 

Fliessbasch’s (“new”) SF.

Cluster States in Atomic Nuclei and Cluster Decay

Processes. Kadmenskii SG, Kurgalin SD, Tchuvil’sky

YM, Phys. Part. Nucl., 38, 699 (2007).



CFF, SF, ASYMPTOTIC CHARACTERISTICS OF

NUCLEAR STATES AND CROSS SECTIONS OF

NUCLEAR REACTIONS

Calculation of CFF and SF

The cluster-channel terms of basis are built in the

form:

1 2

1 ˆ{ ( )} ,
JA A A nl JMA

W
  =  

They are not orthogonal one to another and to the

shell-model components.

The basis of cluster-channel terms incorporating all

channels of a certain fragmentation A1 + A2 (a

complete set of internal states of each cluster) is

complete. Moreover this basis is overload and

even linear dependent.

The basis may be exploited itself or being added to

a certain number of shell-model WF (polarization

terms). In the latter case a hybrid basis appears.
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The next step in shaping of a basis of general type is to

build orthonormalized WFs including the cluster terms of

several channels and the polarization terms. The WFs

are obtained by diagonalization of the matrix
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in which the terms of the products are expressed in the

form of superpositions of Slater determinants (SD).

Eigenvectors of the matrix normalized by its eigenvalues

shape the desirable basis taking the form of SD linear

combinations. This basis may be employed in computing

of spectra of halo, clustered, resonance states and other

observables.

(1)



The final forms of CFF and SF are the following:
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its eigenvalues are calculated using the formalism of so-

called the cluster coefficients and take the form:

and eigenfunctions (the result of diagonalization (1))

turn out to be expressed through the oscillator WFs
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Norm (overlap) kernel and its computation



α-clustering in the ground states of (s-d)-shell 

nuclei

CONFIGURATION MIXING SHELL MODEL. RESULTS 

AND DISCUSSION

Volya A, Tchuvil’sky YM, Phys. Rev. C 91, 044319 (2015).



The sum rule of the “new” spectroscopic factors

corresponding to a fixed value of n (cluster

strength in 2ħω domain turn out to be equal to

unity. Thus the statistical properties are described

accurately. That is critical for the dense spectra. In

average:

into exp. (3) it is easy to deduce the relationship:
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Inserting the complete set of the resonance WFs
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GENERAL TRENDS OF THE SPECTROSCOPIC 

FACTORS

Spectroscopic factors of α-clusters in 32S 

states



α-clustering in 16O 



An eigenfunction of any A-fermion Hamiltonian can be

presented in the form of a superposition of determinants

built up in terms of one-nucleon WFs or in terms of

another basis:
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No one transformation of the Hamiltonian and/or coordinates

violates this restriction rule.

Therefore the number Nmin is a topological invariant for fixed

fermion number A. It is so-called “nodes theorem”.

And it is true for a system of bosons consisting of fermions.

PAULI PRINCIPLE IN HEAVY CLUSTER SYSTEMS. 

ARE FISSION AND FUSION CLUSTER PROCESSES?



The Structural Forbiddenness of the Heavy

Fragmentation of the Atomic Nucleus. Smirnov YF,

Tchuvil ’sky YM, Physics Letters B, 134, 25 (1984).

32S example

32 16 16

min minS 44; O+ O 48 4N N q= = =

258Fm symmetric fission

48q =

16O 16O
ˆ| { ( ) }nlA    

The cluster channel WF containing the ground states

of clusters

In general the mass distribution of fission fragments is

in correlation with the q-value.



NUCLEON AS A QUARK CLUSTER. HIDDEN COLOR

Isobaric Component of Deuteron in Quark Model Smirnov

YF, Tchuvil ’sky YM, Journal of Physics G, 4, L1 (1978)
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Is Deuteron a Six-Quark Model? Matveev VA, Sorba

P, Nuovo Chimento Letters, 20 435 (1977).
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Where d[f] is the dimension of the Young frame [f] –

irreducible representation of the group of permutations

in the color space. No the distance dependence!



CLUSTER RADIOACTIVITY

The discovery and the history

1984, H. Rose, J. Jones 223Ra→ 209Pb + 14C

1914, E Rutherford – No other heavy particles besides alpas

at the level 10-4

50th – 60th Geochemists – too much Ar in uranium ores.

End of 70th – A. Sandulescu demonstrated that the

penetrability of the cluster potential barrier is of the same

order as the alpha-particle one.

End of 70th – beginning of 80th – the group under the guide of

B. Novatsky (Kurchatov Center) searched for the effect and

confirmed the discovery in May 1985.



Known and promising examples
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NUCLEAR CLUSTERING IN AB INITIO APPROACH

Rodkin DM, Tchuvil’sky YM, Chinese Phys. C 44 124105

(2020); Phys. Rev. C 103, 024304 (2021).

Is 8Be a perfect cluster system?

Choice of bases is the following:

1. Conventional basis of NCSM – mod1.

2. Pure cluster one-channel basis (both 4He clusters in GS,

truncation level – Nmax = 0) – mod2.

3. Three- or two-channel basis incorporating the realistic

WFs of the first and the second 0+ states of 4He with

truncation level Nmax =2 – mod3.

The results are obtained by use of NN-potential Daejeon16

which is built starting from N3LO forces (A.M. Shirokov, I.J.

Shin, Y. Kim et al, PLB 761, 87 (2016) are exploited. Code

Bigstick is used for shell-model computing.
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CFF and SF are computed using the procedure

presented above.

The generalization procedure is the following. Right-lower

sub-matrix of (1) contains WF of different states of

fragments determining certain channels in this case:

1 1 1 2

2
' 000 000 '

ˆ|| || ( ) ( ) | | ( ) ' ( ) ' .nn A nl A A n l AN R A R=           

After the diagonalization of it orthnormalized set of

coupled-channel A-nucleon cluster WF appear. The sum

of squared overlaps of the WF ψA with these WF

provides a proper definition of the aggregate amount of

clustering.

Contrary to this definition ordinary SF may be called the

one-channel amount of clustering.
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SPECTROSCOPIC FACTOR AND 

AGGREGATE AMOUNT OF CLUSTERING 

FOR α-PARTICLES IN 8Be NUCLEUS

Daejeon16 NN-potential

N=6 N=8 N=10 N=12 N=14

α+α 0.765 0.866 0.861 0.875 0.880

α+α , α*+α 0.793 0.868 0.868

α+α , α*+α , α*+α * 0.864 0.879 0.873
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Daejeon16, ħω =15 MeV. Red – mod1, green – mod2,

blue – mod3.

TOTAL BINDING ENERGIES OF 8Be 

NUCLEUS IN VARIOUS BASES 



ASYMPTOTIC CHARACTERISTICS (ANC and Γ) of 

8Be and 7Li NUCLEI 
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The asymptotic characteristics are deduced using the

various R-matrix approaches.

To determine the position of the matching point Rp of

the CFF and the asymptotic WF, the condition of

equality of the logarithmic derivatives is used:
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=

Logarithmic derivatives

of CFF (solid line) and

function Gl(ρ) (dashed

line) for 7/2− state of 7Li

nucleus for 4He+3H

channel.



If the resonance is wide, then the partial width is

calculated using the standard R-matrix theory

For determining the decay width of subthreshold

resonance, we used the formulation of

(Mukhamedzhanov and Tribble,1999):
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Therefore, the decay width of this resonance is given

by the expression:
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SPECTRA of 8Be and 7Li NUCLEI
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