Теории за рамками Стандартной модели и новая физика

И. Волобуев (ОТФВЭ)

1. Стандартная модель и физика высоких энергий

Стандартная модель (1967-1973 гг.)

Факты, необъяснимые в ее рамках:

1. Темная материя в галактиках

2. Барионная асимметрия Вселенной

3. Аномальный магнитный момент мюона

Лаборатория Высоких Энергий НИИЯФ – 1968 г.

В.Г. Шевченко

С.Н. Вернов

Ю.М. Широков

Теория релятивистского анизотропного пространствавремени

Г.Ю. Богословский, "О специальной релятивистской теории анизотропного пространства-времени," Доклады Академии Наук, т. 213 № 5 (1973), 1055-1058

Метрика Минковского $\mathrm{d} \mathrm{s}^2 = \eta_{\mu
u} \mathrm{d} \mathrm{x}^\mu \mathrm{d} \mathrm{x}^
u$

Метрика Финслера
$$ds^2 = \left(\frac{(\eta_{\mu\nu}\mathbf{v}^{\mu}d\mathbf{x}^{\nu})^2}{\eta_{\mu\nu}d\mathbf{x}^{\mu}d\mathbf{x}^{\nu}}\right)^{\mathbf{r}}\eta_{\mu\nu}d\mathbf{x}^{\mu}d\mathbf{x}^{\nu},$$

 $\mathbf{v} = (1, \vec{\mathbf{v}}), \quad \eta_{\mu\nu}\mathbf{v}^{\mu}\mathbf{v}^{\nu} = \mathbf{0}$

Пространство Богословского-Финслера.

Теории Калуцы-Клейна

И.П. Волобуев, Ю.А. Кубышин, Ж.М. Моурао, Г. Рудольф, "Размерная редукция симметричных калибровочных полей, модели Хиггса и спонтанная компактификация", Физика элементарных частиц и атомного ядра, **20** № 3 (1989), 561-627

$$\mathbf{E} = \mathbf{M}^4 \times \mathbf{G}/\mathbf{H}, \quad \dim \mathbf{E} = \mathbf{4} + \mathbf{d}$$

$$\mathbf{S} = \int_{\mathbf{E}} \left(\frac{1}{16\pi G} \mathbf{R} - \frac{1}{8g^2} tr\left(\mathbf{F}_{\mathbf{MN}} \mathbf{F}^{\mathbf{MN}}\right) \right) \sqrt{-g} \, d^{4+d} \mathbf{x}$$

Лаборатория аналитических вычислений в физике высоких энергий (1983 г.)

Конференция QFTHEP

Проект СотрНЕР

А.А. Логунов

Возбужденные лептоны

A.Beliaev, E. Boos, A. Pukhov, "Study of excited neutrino production in e +e-, γe and $\gamma \gamma$ collisions TeV energies," Physics letters B 296 (1992) 452

E. Boos, A. Vologdin, D. Toback, and J.Gaspard, "Prospects of searching for excited leptons during run II of the Fermilab Tevatron," PHYSICAL REVIEW D 66, 013011 (2002)

Современные ограничения LHC на массы $e^* \sim 3$ TeV и $v^* \sim 1.6$ TeV

Поиски лептокварков

Лептокварки предсказываются теориями ВО, составными моделями и т.д.

Каналы рождения

Канал распада

 $\begin{array}{l} LQ1 \rightarrow eu, \, ed, \, \nu_e u, \, \nu_e d \\ LQ2 \rightarrow \mu c, \, \mu s, \, \nu_\mu c, \, \nu_\mu s \\ LQ3 \rightarrow \tau t, \, \tau b, \, \nu_\tau t, \, \nu_\tau b \end{array}$

Научная сессия к 75-летию НИИЯФ. 16 февраля 2021 г.

$$\mathcal{L} = \mathcal{L}_S^g + \mathcal{L}_V^g,$$

J.Blumlein, E.Boos, and A.Kryukov, ``Leptoquark pair production in hadronic interactions," Z. Phys. C76, 137 (1997)

$$\mathcal{L}_{S}^{g} = \sum_{scalars} \left[\left(D_{ij}^{\mu} \Phi^{j} \right)^{\dagger} \left(D_{\mu}^{ik} \Phi_{k} \right) - M_{S}^{2} \Phi^{i\dagger} \Phi_{i} \right],$$

$$\mathcal{L}_{V}^{g} = \sum_{vectors} \left\{ -\frac{1}{2} G_{\mu\nu}^{i\dagger} G_{i}^{\mu\nu} + M_{V}^{2} \Phi_{\mu}^{i\dagger} \Phi_{i}^{\mu} - ig_{s} \left[(1 - \kappa_{G}) \Phi_{\mu}^{i\dagger} t_{ij}^{a} \Phi_{\nu}^{j} \mathcal{G}_{a}^{\mu\nu} + \frac{\lambda_{G}}{M_{V}^{2}} G_{\sigma\mu}^{i\dagger} t_{ij}^{a} \mathcal{G}_{\nu}^{j\mu} \mathcal{G}_{a}^{\nu\sigma} \right] \right\}$$

$$\kappa_G = \lambda_G = 0$$

$$\kappa_G = 1, \lambda_G = 0$$

Взаимодействие типа Янга-Миллса

= 0 Минимальное векторное взаимодействие

						Scalar		Vector	
Collider	Mode	\sqrt{S}	Luminosity	Q	Leptoquarks		Leptoquarks		
					100 #	10#	100#	10#	
TEVATRON	$p\overline{p}$	1.8 TeV	$100pb^{-1}$		140	200	170	225	
TEV33	$p\overline{p}$	$2.0 { m TeV}$	$1 f b^{-1}$		210	290	290	370	
LHC	pp	14 TeV	$10 f b^{-1}$		900	1200	1200	1500	
HERA	ep	314 GeV	$100 pb^{-1}$	1/3	-	50	50	60	
				5/3	45	60	60	75	
			$500pb^{-1}$	1/3	45	60	60	75	
				5/3	55	75	70	85	
$LEP \otimes LHC$	ep	1.26 TeV	$1 f b^{-1}$	1/3	125	180	180	240	
				5/3	165	225	210	270	
LINAC	$\gamma^*\gamma^*$	$500 { m GeV}$	$10 f b^{-1}$	1/3	90	120	120	155	
$e^{+}e^{-}$	WWA			5/3	135	185	170	210	
LINAC	$\gamma\gamma$	$500 { m GeV}$	$10 f b^{-1}$	1/3	160	180	175	190	
$e^{+}e^{-}$	Compton			5/3	200	205	200	205	
LINAC	$\gamma^*\gamma^*$	1 TeV	$10 f b^{-1}$	1/3	140	195	285	345	
e^+e^-	WWA			5/3	220	325	435	470	
LINAC	$\gamma\gamma$	1 TeV	$10 f b^{-1}$	1/3	300	340	390	405	
e^+e^-	Compton			5/3	400	405	410	410	

Современные ограничения на массы скалярных лептокварков на LHC при энергии 13 TeV составляют 1100 GeV для двух первых поколений и 640 GeV для третьего.

Заряженный скаляр

E. Boos, I. Volobuev, "Simple Standard Model Extension by Heavy Charged Scalar," Physical Review D 97, 095014-1 (2018)

Лагранжиан модели имеет вид:

$$\mathbf{L}_{\mathbf{S}} = (\mathbf{D}_{\mu}\mathbf{S})^{*}\mathbf{D}^{\mu}\mathbf{S} - \mathbf{V}(\mathbf{S}), \quad \mathbf{D}_{\mu}\mathbf{S} = (\partial_{\mu} - \mathbf{i}\mathbf{g}'\frac{\mathbf{Y}_{\mathbf{S}}}{2}\mathbf{B}_{\mu})\mathbf{S},$$

 $\mathbf{B}_{\mu} = \cos \theta_{\mathbf{W}} \mathbf{A}_{\mu} - \sin \theta_{\mathbf{W}} \mathbf{Z}_{\mu}, \ \mathbf{V}(\mathbf{S}) = \mu_{\mathbf{S}}^{2} |\mathbf{S}|^{2} + \lambda_{\mathbf{S}} \left(|\mathbf{S}|^{2} \right)^{2} + \lambda_{\Phi \mathbf{S}} |\Phi|^{2} |\mathbf{S}|^{2}.$

В модели всего три параметра
$$\mathbf{M}_{\mathbf{S}}^2 = \mu_{\mathbf{S}}^2 + \frac{1}{2}\lambda_{\Phi\mathbf{S}}\mathbf{v}^2, \quad \lambda_{\Phi\mathbf{S}}, \quad \lambda_{\mathbf{S}}.$$

Это кандидат на роль тяжелой стабильной заряженнойчастицы (HSCP) или долгоживущей частицы (LLP). Ограничение LHC на массу 300 GeV. Ожидаемое ограничение HL-LHC (27 TeV) составляет примерно 2.7 TeV.

2. Большие дополнительные измерения

V.A. Rubakov and M.E. Shaposhnikov, «Do We Live Inside A Domain Wall?» Phys. Lett. 125 (1983) 136

L. Randall and R. Sundrum, «A large mass hierarchy from a small extra dimension», Phys. Rev. Lett. 83 (1999) 3370

П.Ф. Ермолов

Две браны с натяжением, расположенные в неподвижных точках орбифолда S¹/Z₂:

$$S = \int d^4x \int_{-L}^{L} dy \left(2M^3 R - \Lambda\right) \sqrt{-g} - \lambda_1 \int_{y=0} \sqrt{-\tilde{g}} d^4x - \lambda_2 \int_{y=L} \sqrt{-\tilde{g}} d^4x.$$

Решение для фоновой метрики:

$$ds^{2} = \gamma_{MN} dx^{M} dx^{N} = e^{-2\sigma(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + (dy)^{2}, \ \sigma(y) = k|y| + c.$$

M. Smolyakov, «Submanifolds in space-time with unphysical extra dimensions, cosmology and warped brane world models», Class. Quant. Grav. **25** (2008), 238003

E.E. Boos, Yu.A. Kubyshin, M.N. Smolyakov and I.P. Volobuev, «Effective Lagrangians for physical degrees of freedom in the Randall-Sundrum model», Class. Quant. Grav. 19 (2002) 4591

Линеаризованная гравитация получается с помощью подстановки

$$g_{MN} = \gamma_{MN} + \frac{1}{\sqrt{2M^3}} h_{MN}$$

На поле h_{MN} можно наложить калибровку

$$h_{\mu 4} = 0, \ h_{44} = \phi(x).$$

$$l = \int_{0}^{L} \sqrt{ds^2} \simeq \int_{0}^{L} \left(1 + \frac{1}{2\sqrt{2M^3}} h_{44} \right) dy = L \left(1 + \frac{1}{2\sqrt{2M^3}} \phi(x) \right).$$

Координаты $\{x^{\mu}\}$ Галилеевы при $c=0, \ M_{Pl}^2=rac{M^3}{k}(1-e^{-2kL}).$

Координаты $\{x^{\mu}\}$ Галилеевы при c=-kL, $M_{Pl}^2=rac{M^3}{k}(e^{2kL}-1).$

В.А. Рубаков, «Большие и бесконечные дополнительные измерения», УФН 171 (2001) 913

E.E. Boos, Y.S. Mikhailov, M.N. Smolyakov and I.P. Volobuev, «Energy scales in a stabilized brane world», Nucl. Phys. B 717 (2005) 19

Проблема иерархии решается, если М ~ k ~ 1 TeV и kL~ 35.

Появляется башня тензорных полей на бране, наименьшая масса порядка М, константа связи порядка 1/М.

Модель должна быть стабилизирована!

E.E. Boos, Y.S. Mikhailov, M.N. Smolyakov and I.P. Volobuev, «Physical degrees of freedom in stabilized brane world models», Mod. Phys. Lett. A 21 (2006) 1431

Физические степени свободы стабилизированной модели в линейном приближении:

тензорные поля $b_{\mu\nu}{}^{n}(x)$, n = 0,1, ..., m₀ = 0, и скалярные поля $\phi_{n}(x)$, n = 1,2, ...

Они взаимодействуют с тензором энергии-импульса Стандартной модели Т_{иv}.

Процессы с калуца-клейновскими гравитонами в модели RS

3.

E.E. Boos, V.E. Bunichev, M.N. Smolyakov and I.P. Volobuev, «Testing extra dimensions below the production threshold of Kaluza-Klein excitations» Phys. Rev. D 79 (2009) 104013

При низких энергиях взаимодействие КК мод с полями СМ приводит к контактному взаимодействию последних

$$L_{eff} = \frac{1.82}{\Lambda_{\pi}^2 m_1^2} T^{\mu\nu} \tilde{\Delta}_{\mu\nu,\rho\sigma} T^{\rho\sigma},$$

$$\tilde{\Delta}_{\mu\nu,\rho\sigma} = \frac{1}{2} \eta_{\mu\rho} \eta_{\nu\sigma} + \frac{1}{2} \eta_{\mu\sigma} \eta_{\nu\rho} - \left(\frac{1}{3} - \frac{\delta}{2}\right) \eta_{\mu\nu} \eta_{\rho\sigma},$$

т₁ и Λ_π - масса и константа связи первой тензорной моды, δ - константа, определяющая вклад скалярных мод.

Dilepton invariant mass distribution for 95% CL parameter $\frac{0.91}{\Lambda_{\pi}^2 m_1^2} \times TeV^4 = 0.0014$ for the LHC ($L = 100 fb^{-1}$)

Научная сессия к 75-летию НИИЯФ. 16 февраля 2021 г.

Поиски нового резонанса W' в моде top + b

Отрицательная интерференция для W' (L)

Boos, Bunichev, Dudko, Perfilov, "Interference between W' and W in single-top quark production processes," Phys. Lett. B 655, 245 (2007) Boos, Bunichev, Perfilov, Smolyakov, Volobuev, "The specificity of searches for W', Z' and γ' coming from extra dimensions," JHEP 1406, 160 (2014)

W

1-е КК возбуждение W' на LHC Дополнительная интерференция с башней КК возбуждений

Интересно посмотреть величину эффекта для FCC

Вследствие отрицательной интерференции ограничения на массу левого W' несколько хуже, чем на массу правого

Физика радиона

E. Boos, S. Keizerov, E. Rahmetov, K. Svirina, «Higgs boson-radion similarity in production processes involving off-shell fermions» Phys. Rev. D 90 (2014) 095026

E. Boos, S. Keizerov, E. Rahmetov, K. Svirina, «Comparison of associated Higgs boson-radion and Higgs boson pair production processes» Phys. Rev. D 94 (2016) 024047

Поле радиона взаимодействует со следом тензора энергииимпульса

$$\begin{split} L &= -\frac{r(x)}{\Lambda_{r}} T^{\mu}_{\mu}, \qquad r(x) \text{ - поле радиона, } \Lambda_{r} \text{- константа связи,} \\ T^{\mu}_{\mu} &= \frac{\beta(g_{s})}{2g_{s}} G^{ab}_{\rho\sigma} G^{\rho\sigma}_{ab} + \frac{\beta(e)}{2e} F_{\rho\sigma} F^{\rho\sigma} + \sum_{f} \left[\frac{3i}{2} \left((D_{\mu} \overline{f}) \gamma^{\mu} f - \overline{f} \gamma^{\mu} (D_{\mu} f) \right) + 4m_{f} \overline{f} f \right] \\ &- \left(\partial_{\mu} h \right) \left(\partial^{\mu} h \right) + 2m_{h}^{2} h^{2} \left(1 + \frac{h}{2v_{0}} \right)^{2} - \left(2m_{W}^{2} W^{+}_{\mu} W^{-\mu} + m_{Z}^{2} Z^{\mu} Z_{\mu} \right) \left(1 + \frac{h}{v_{0}} \right)^{2} \end{split}$$

Процесс излучения радиона $(m_e \approx 0)$

$$\begin{split} M_{1} &= -2iC\,\overline{e}^{+}(p_{2})\Gamma_{\mu}e^{-}(p_{1})\frac{1}{p^{2}-M_{Z}^{2}}M_{Z}^{2}\,\varepsilon^{\mu}(p_{Z})r(p_{r}) \qquad C = \frac{1}{\Lambda_{r}}\frac{e}{2\sin\theta_{w}\cos\theta_{w}} \\ M_{2} &= -iC\,\overline{e}^{+}(p_{2})\left[\frac{3}{2}(\not{k}+\not{p}_{2})\right]\frac{\not{k}}{k^{2}}\Gamma_{\mu}e^{-}(p_{1})\varepsilon^{\mu}(p_{Z})r(p_{r}) = -\frac{3}{2}iC\,\overline{e}^{+}(p_{2})\Gamma_{\mu}e^{-}(p_{1})\varepsilon^{\mu}(p_{Z})r(p_{r}) \\ M_{3} &= -iC\,\overline{e}^{+}(p_{2})\Gamma_{\mu}\frac{\not{q}}{q^{2}}\left[\frac{3}{2}(\not{q}-\not{p}_{1})\right]e^{-}(p_{1})\varepsilon^{\mu}(p_{Z})r(p_{r}) = -\frac{3}{2}iC\,\overline{e}^{+}(p_{2})\Gamma_{\mu}e^{-}(p_{1})\varepsilon^{\mu}(p_{Z})r(p_{r}) \\ M_{4} &= +3iC\,\overline{e}^{+}(p_{2})\Gamma_{\mu}e^{-}(p_{1})\varepsilon^{\mu}(p_{Z})r(p_{r}) &= +3iC\,\overline{e}^{+}(p_{2})\Gamma_{\mu}e^{-}(p_{1})\varepsilon^{\mu}(p_{Z})r(p_{r}) \\ M_{2} &+ M_{3} + M_{4} = 0 \qquad \left|M\right|^{2} = \left|M_{1}\right|^{2} \end{split}$$

Процесс излучения радиона имеет тот же вид, что и процесс излучения бозона Хиггса (с точностью до замен $m_r \to m_h$, $\Lambda_r \to \upsilon$) 22

Смешивание полей Хиггса и радиона

Радион и бозон Хиггса имеют одинаковые квантовые числа, и поэтому поля радиона и его возбуждений могут смешиваться с полем Хиггса, если они взаимодействуют. Взаимодействие между полем Хиггса σ(х) и полем радиона φ₁(х) может быть диагонализовано с помощью вращения

$$h(x) = \cos \theta \, \sigma(x) + \sin \theta \, \phi_1(x)$$

$$r(x) = -\sin \theta \, \sigma(x) + \cos \theta \, \phi_1(x)$$

 $-\pi/4 < \theta < \pi/4$

Научная сессия к 75-летию НИИЯФ. 16 февраля 2021 г.

$$\begin{split} L_{h-r} &= \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} + \frac{1}{2} \partial_{\mu} r \partial^{\mu} r - \frac{1}{2} \mu_{r}^{2} r^{2} \\ &- \frac{(c \cos \theta + \sin \theta)}{\Lambda_{r}} h (T_{\mu}^{\mu} + \Delta T_{\mu}^{\mu}) + \frac{(c \sin \theta - \cos \theta)}{\Lambda_{r}} r (T_{\mu}^{\mu} + \Delta T_{\mu}^{\mu}) \\ &- \sum_{f} \frac{m_{f}}{v} \bar{\psi}_{f} \psi_{f} (\cos \theta h - \sin \theta r) + \frac{2M_{W}^{2}}{v} W_{\mu}^{-} W^{\mu+} (\cos \theta h - \sin \theta r) \\ &+ \frac{M_{Z}^{2}}{v} Z_{\mu} Z^{\mu} (\cos \theta h - \sin \theta r) + \frac{M_{W}^{2}}{v^{2}} W_{\mu}^{-} W^{\mu+} (\cos \theta h - \sin \theta r)^{2} \\ &+ \frac{M_{Z}^{2}}{2v^{2}} Z_{\mu} Z^{\mu} (\cos \theta h - \sin \theta r)^{2}. \end{split}$$

Параметр с учитывает вклад отынтегрированных тяжелых мод, а вклад конформной аномалии имеет вид

$$\Delta T^{\mu}_{\mu} = \frac{\beta(g_s)}{2g_s} G^{ab}_{\rho\sigma} G^{\rho\sigma}_{ab} + \frac{\beta(e)}{2e} F_{\rho\sigma} F^{\rho\sigma}$$

E. Boos, V. Bunichev, M. Perfilov, M. Smolyakov and I. Volobuev, «Higgs-radion mixing in stabilized brane world models», Phys. Rev. D 92 (2015) 095010

С помощью этого лагранжиана был исследован вопрос о значениях массы радиона, допустимых современными экспериментальными данными. Для этого анализа использовались силы сигнала в основных каналах рождения и распада $gg \to r \to \gamma\gamma$ и $gg \to r \to ZZ^*$.

Этот лагранжиан также дает модель взаимодействия частиц СМ с темной материей.

Программа MicrOMRGAs.

Допустимая область масс тяжелого радиона при $\Lambda_r = 3$ TeV.

Научная сессия к 75-летию НИИЯФ. 16 февраля 2021 г.

Спасибо!